We use cookies to improve your experience on our Website. We need cookies to continuously improve the services, to enable certain features and when embedding services or content of third parties, such as video player. By using our website, you agree to the use of cookies. We use different types of cookies. You can personalize your cookie settings here:

Show detail settings
Please find more information in our privacy statement.

There you may also change your settings later.

Calcineurin: Key molecule in energy metabolism

Pfluger PT, Kabra DG, Aichler M, Schriever SC, Pfuhlmann K, García VC, Lehti M, Weber J, Kutschke M, Rozman J, Elrod JW, Hevener AL, Feuchtinger A, Hrabě de Angelis M, Walch A, Rollmann SM, Aronow B, Müller TD, Perez-Tilve D, Jastroch M, De Luca M, Molkentin JD, Tschöp MH. Calcineurin Links Mitochondrial Elongation with Energy Metabolism. doi: 10.1016/j.cmet.2015.08.022. Cell Metabolism. Sep 23, 2015

 

Our body consistently adjusts its energy management to changes in the supply of nutrients or physical activity. Malfunctioning in this process plays an essential role in the genesis of metabolic disorders like adiposity and diabetes. Scientists at the Helmholtz Zentrum München now report that in this process the protein calcineurin assumes a central function by optimising cellular respiration. Genetic as well as pharmacological calcineurin inhibition protects from diet-induced obesity in both a fly and mouse animal models.

The evolutionary highly conserved role of calcineurin in fly and mouse energy metabolism suggests a similar function in humans. It would therefore be an obvious conclusion to suppress the function of calcineurin through medication in order to treat obesity. Corresponding inhibitors have been deployed in high dosages in the clinic for years in order to prevent rejection reactions after tissue transplants but due to numerous side effects have not been above criticism. Effects from low-dosage calcineurin inhibitors on the body weight of adipose patients have, however, not yet been studied clinically. Corresponding new approaches are currently being tested. They could play a role in future diabetes therapies.

Original publication:
Pfluger PT, Kabra DG, Aichler M, Schriever SC, Pfuhlmann K, García VC, Lehti M, Weber J, Kutschke M, Rozman J, Elrod JW, Hevener AL, Feuchtinger A, Hrabě de Angelis M, Walch A, Rollmann SM, Aronow B, Müller TD, Perez-Tilve D, Jastroch M, De Luca M, Molkentin JD, Tschöp MH. Calcineurin Links Mitochondrial Elongation with Energy Metabolism. doi: 10.1016/j.cmet.2015.08.022. Cell Metabolism. Sep 23, 2015

Link to the publication:
http://www.sciencedirect.com/science/article/pii/S1550413115004556