Dresden, 15.11.2019

Forscher entdecken eine neue Weise, wie Insulin mit seinem Rezeptor interagiert

Seit der Entdeckung des Insulins vor fast 100 Jahren versuchen Wissenschaftler zu entschlüsseln, wie genau das Hormon mit seinem Rezeptor interagiert. Dies ist wichtig, um bessere therapeutische Insuline entwickeln zu können. In einer neuen Studie haben Forscher nun ein kritisches Teil des Puzzles gelöst. Sie konnten zeigen, wie Insulin an einer zweiten Bindestelle mit seinem Rezeptor interagiert. Das Forscherteam des Paul-Langerhans-Instituts Dresden, ein Satellit des Helmholtz-Zentrums München und Partner des Deutschen Zentrums für Diabetesforschung (DZD) und der Medizinischen Fakultät Carl Gustav Carus der TU Dresden haben die Ergebnisse der Zusammenarbeit mit Kollegen des Max-Planck-Instituts für Biochemie in München, der McGill University in Kanada und der Universität Helsinki in Finnland im Journal of Cell Biology (JCB) veröffentlicht.

Frühere Studien haben die zentrale Rolle von Insulin als Regulator des Blutzuckers untersucht und dessen Beteiligung an Diabetes und anderen chronischen Erkrankungen, einschließlich neurodegenerativer Erkrankungen und Krebs, nachgewiesen. Die biologische Wirkung von Insulin wird dabei durch seinen Rezeptor – den Insulinrezeptor – vermittelt, der auf der Zelloberfläche lokalisiert ist.

"Als in den 1920er Jahren zum ersten Mal Insulin an Patienten verabreicht wurde, war dies ein echter Durchbruch in der Diabetesbehandlung. Es ist jedoch nach wie vor eine Herausforderung, Insuline zu erzeugen, die das gesamte Spektrum der endogenen Insulinwirkung widerspiegeln", erklärt Dr. Ünal Coskun, Forschungsgruppenleiter am Institut für Pankreatische Inselzellforschung (IPI) und Paul-Langerhans-Institut Dresden (PLID). "Der Hauptgrund dafür ist, dass wir immer noch nicht genug darüber wissen, wie Insulin an seinen Rezeptor bindet und wie dieses Signal innerhalb der Zelle weitergegeben wird."

Bereits vor 40 Jahren wurde erstmals vermutet, dass Insulin an zwei verschiedenen Stellen auf dem Rezeptor bindet. Obwohl mittlerweile viel über die Wechselwirkungen bekannt ist, die an der ersten dieser Bindestellen auftreten, war nur sehr wenig darüber bekannt, was an der zweiten Stelle passiert. Doch erst das genaue Verständnis, wie Insulin mit seinem Rezeptor an beiden Bindestellen interagiert, erlaubt es den Forschern nun, verbesserte Wirkstoffe für insulinbedingte Erkrankungen zu entwickeln.

In der neuen Studie zeigen die Forscher, wie Insulin an die zweite Stelle bindet. Mit einer leistungsstarken Technik, der so genannten Kryoelektronenmikroskopie, erhielten die Forscher ein detailliertes 3D-Bild der Ektodomäne* des Insulinrezeptors, welcher Insulin gebunden hat.

"Der Schlüssel lag darin, den äußeren Teil des Insulinrezeptors, die Ektodomäne, zu untersuchen, nachdem er mit hohen Insulinkonzentrationen gesättigt wurde", erklärt Dr. Theresia Gutmann, Mitautorin der Studie vom Paul-Langerhans-Institut. Und Co-Autor Dr. Ingmar Schäfer von der Abteilung Strukturzellbiologie am Max-Planck-Institut für Biochemie (MPIB) ergänzt: "Wir haben mehr als 8.000 elektronenmikroskopische Bilder aufgenommen und mehr als 300.000 einzelne Rezeptorpartikel analysiert, aus denen wir 2D-Bilder des "T"-förmigen Komplexes zur Rekonstruktion eines 3D-Bildes erzeugen konnten."

Mit diesem Verfahren gelang es den Forschern erstmals direkt die Bindung von Insulin an der zweiten Stelle (2) zu beobachten und zu zeigen, wie der Insulinrezeptor seine Konformation zu einer T-förmigen Struktur verändert. Der Rezeptor besteht aus zwei identischen Teilen, die jeweils zwei Insulinbindungsstellen enthalten, so dass bis zu vier Insulinmoleküle durch einen einzigen Rezeptor gebunden werden können (Abbildung 1).

Abbildung 1: Der mit Insulinmolekülen gesättigte Insulinrezeptor. Eine repräsentative 2D-Ansicht der mit Insulin gesättigten Insulinrezeptor-Ektodomäne, erzeugt mittels Kryoelektronenmikroskopie und Einzelpartikelanalyse (links) und das entsprechende Schema des vollständigen Rezeptors (rechts). Die Ektodomäne des Insulinrezeptors ist blau und die vier Insuline sind rot gefärbt.  Weitere Ansicht im Video

 

Parallel dazu nutzten die Wissenschaftler computergestützte Modellierungs- und Simulationsmethoden, um diese Wechselwirkungen auf atomarer Ebene zu verstehen. "Solche Computertechniken werden immer wichtiger, um komplizierte dynamische Prozesse in lebenden Zellen zu analysieren. Sie bieten zudem den zusätzlichen Vorteil, dass Wirkstoffscreens in silico** – also am Computer – durchgeführt werden können", sagt Prof. Ilpo Vattulainen von der der Universität Helsinki.

Frühere Studien, die die Struktur des Insulinrezeptors analysierten, waren schwer mit biochemischen und genetischen Daten in Einklang zu bringen, die zeigen, wie Insulin mit seinem Rezeptor interagiert. Die Wissenschaftler hoffen nun, dass diese neuen Details zu den Interaktionen zwischen Insulin und seinem Rezeptor die aktuellen Modelle der Insulinbindung erweitern und den Weg für neue Ansätze des strukturbasierten Wirkstoffdesigns ebnen werden.

 

Weitere Informationen

Original-Publikation:
Gutmann, Schäfer, Poojari, Brankatschk, Vattulainen, Strauss, and Coskun. (2019): Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. Journal of Cell Biology, DOI: 10.1083/jcb.201907210

Das Paul-Langerhans-Institut des Helmholtz-Zentrums München am Universitätsklinikum Carl Gustav Carus und der Medizinischen Fakultät der TU Dresden (PLID) leistet einen entscheidenden Beitrag zum besseren Verständnis der Krankheitsmechanismen und zur Erforschung neuer Therapiemöglichkeiten. Das Institut ist Gründungspartner des Deutschen Zentrums für Diabetesforschung (DZD e.V.) und seit Januar 2015 Satelliteninstitut des Helmholtz Zentrums München. Die Arbeit im DZD-Netzwerk ermöglicht Forschungsprojekte in viel größerem Umfang, sowohl im Bereich der Grundlagenforschung durch interdisziplinäre Ansätze als auch im Bereich der klinischen Studien.

Das Deutsche Zentrum für Diabetesforschung e.V. ist eines der sechs Deutschen Zentren der Gesundheitsforschung. Es bündelt Experten auf dem Gebiet der Diabetesforschung und verzahnt Grundlagenforschung, Epidemiologie und klinische Anwendung. Ziel des DZD ist es, über einen neuartigen, integrativen Forschungsansatz einen wesentlichen Beitrag zur erfolgreichen, maßgeschneiderten Prävention, Diagnose und Therapie des Diabetes mellitus zu leisten. Mitglieder des Verbunds sind das Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, das Deutsche Diabetes-Zentrum DDZ in Düsseldorf, das Deutsche Institut für Ernährungsforschung DIfE in Potsdam-Rehbrücke, das Institut für Diabetesforschung und Metabolische Erkrankungen des Helmholtz Zentrum München an der Eberhard-Karls-Universität Tübingen und das Paul-Langerhans-Institut Dresden des Helmholtz Zentrum München am Universitätsklinikum Carl Gustav Carus der TU Dresden, assoziierte Partner an den Universitäten in Heidelberg, Köln, Leipzig, Lübeck und München sowie weitere Projektpartner.

 

Fachlicher Ansprechpartner:
Dr. Ünal Coskun
Paul Langerhans Institut Dresden des Helmholtz Zentrums München am Universitätsklinikum
und der Medizinischen Fakultät Carl Gustav Carus der TU Dresden
Membrane Biochemistry
Fetscherstrasse 74,
01307 Dresden
E-Mail: uenal.coskun(at)helmholtz-muenchen.de

* Ektodomäne bezeichnet den Abschnitt eines Membranproteins, der in den Extrazellulärraum ragt.

** In silico bezeichnet Vorgänge, die im Computer ablaufen. Der Begriff leitet sich von der Tatsache ab, dass die meisten Computer-Chips auf Basis von Silizium hergestellt werden.

Pressekontakt

Birgit Niesing


+49 (0)89 3187-3971

Abbildung 1: Der mit Insulinmolekülen gesättigte Insulinrezeptor. Eine repräsentative 2D-Ansicht der mit Insulin gesättigten Insulinrezeptor-Ektodomäne, erzeugt mittels Kryoelektronenmikroskopie und Einzelpartikelanalyse (links) und das entsprechende Schema des vollständigen Rezeptors (rechts). Die Ektodomäne des Insulinrezeptors ist blau und die vier Insuline sind rot gefärbt. Quelle: Gutmann, Schäfer, Poojari et al., 2019